
Microprocessors & Microcontrollers

Second Year
Electrical Engineering Department

College of Engineering
Basrah University

2024-2025

2: Instruction Set and Assembly Language
Programming Of 8086

Instructions Set of 8086

• Program is a set of instructions written to solve a problem. Instructions are the
directions which a microprocessor follows to execute a task or part of a task.
Broadly computer language can be divided into two parts as high-level language and
low- level language. Low-level languages are machine specific. Low-level language
is further divided into machine language and assembly language.

• Machine language is the only language which a machine can understand. Instructions
in this language are written in binary bits as a specific bit pattern. The computer
interprets this bit pattern as an instruction to perform a particular task. The entire
program is a sequence of the binary numbers. This is a machine-friendly language but
not user friendly. Debugging is another problem associated with machine language.

• To overcome these problems, programmers develop another way in which instructions
are written in English alphabets. This new language is known as Assembly language.
As microprocessor can only understand the machine language so assembly language
are translated into machine language either manually or by a program known as
assembler.

2

Addressing Modes Of 8086

• The addressing modes are the ways of specifying an operand in an instruction. In
8086 the addressing modes are broadly categorized into two groups, i.e. data
addressing modes and address addressing modes. Data addressing modes are for
defining a data operand in the instruction whereas address addressing modes are
the ways of specifying a branch address in control transfer instructions.

• The 8086 microprocessor introduces many new techniques to access the memory
by introduction of many more types of addressing modes. These addressing modes
provide flexibility to the processor to access memory, which in turn allows the
user to access variables, arrays, records, pointers, and other complex data types in
a more flexible manner.

• In immediate addressing mode the operands are specified within the instruction

itself. The immediate operand can only be the source operand. For example,

• MOV AX, 2500H

• Here the immediate data is 2500H.

3

• Most 8086 instructions can operate on the 8086’s general purpose register set.

The content of a register can be accessed by specifying the name of the register

as an operand to the instruction. For example, the following MOV instruction of

8086 copies the data from the source operand to the destination operand.

• MOV AX, BX
• MOV DL, AL
• MOV SI, DX

• The 8- and l6-bit registers are the valid operands for this instruction. The only
restriction is that both operands must be of the same size.

• The registers are the best place to keep often used variables. Instructions using

the registers are shorter and faster than those that access memory.

• Segment registers can never be used as data registers to hold arbitrary values.

They should only contain segment addresses.

4

• The l6-bit memory address is always written inside the square brackets. For example, the

instruction MOV BL, [2000H], transfers the content of the memory location 2000H in the BL

register. Similarly, the instruction MOV [l2S4H], DL transfers the content of the DL register in the

memory location specified by l2S4H. Figure 4.l shows the direct addressing mode.

5

In this addressing mode, the memory address is

specified by some pointer, index or base registers.

These registers are written inside the square brackets.

There are four forms of this addressing mode on the

8086, best demonstrated by the following instructions:

MOV DX, [BX]

MOV DX, [BP]

MOV DX, [SI]

MOV DX, [DI]

Data Transfer Instructions

• The Data Transfer Instructions are used for transferring data from source location to destination
location. The Arithmetic Instructions are used to perform arithmetic operations like addition,
subtraction, multiplication and division. Logical Instructions perform the logical operations like
AND, OR, XOR operations. Shift and Rotate Instructions are used to perform the logical and
arithmetic shift operations and left and right shifting. String Instructions performs the string related
operations.

• MOV destination, source

• The MOV Instruction copies the second operand (source) to the first operand (destination)

without modifying the contents of the source. In true sense these are not the data transfer

instructions but data copy instruction because the source is not modified.

• The source operand can be an immediate value, general-purpose register or memory location.

The destination register can be a general-purpose register, or memory location. Both operands

must be the same size, which can be a byte or a word.

6

• The following types of operands are supported:

MOV REG, memory

MOV memory, REG

MOV REG, REG

MOV memory, immediate

MOV REG, immediate

• Here the register may be any of the general purposes registers, i.e. AX, BX, CX, DX, AH, AL,

BL, BH, CH, CL, DH, DL, DI, SI, BP, and SP. The memory may be specified by any of the

memory-related addressing modes. Immediate data can only be specified at the source location.

• A data cannot be transferred from a memory to another memory, from memory to an IO, from

an IO to another IO and from IO to memory. IO can communicate with Accumulator only.

• The MOV instruction cannot set the value of the CS and IP registers. Also, it cannot copy value

of one segment register to another segment register. For example, if we want to initialize the Data

Segment by a memory location 02500H, then first we have to load the value 2500H into AX

register and then transferring the contents of AX to DS register with the help of the following

instructions.

• Example MOV AX, 2500H,
 MOV DS, AX

7

Arithmetic Instructions

• The 8086 provides many arithmetic operations: addition, subtraction, negation, multiplication,

division/modulo (remainder), and comparing two values.

• ADD operation: This instruction add a data from source operand to a data from destination and

save the result in the destination operand. The source and destination must be of the same type,

means they must be a byte type or a word type.

• Example: The following example demonstrates how the ADD instruction can be used to perform

the operation (1 + 5 + 7):

MOV AX, 1

ADD AX, 5

ADD AX, 7

• SUB operation: This instruction subtracts the source from the destination along with the value of the

carry flag. The result is stored in the destination. This instruction is used to subtract the data which are

of large in size, i.e. double word type.

8

• Example: The following example demonstrates how the SUB instruction can be used to

perform the operation (5678H – 3421H + 10H):

MOV AX, 5678H

SUB AX, 3421H

ADD AX, 10H

• INC operation: This instruction increment the destination operand by l.

MOV AX, 5678H

INC AX

• DEC operation: This instruction decrement the destination operand by l.

MOV AX, 5678H

DEC AX

9

• DIV operation: This instruction divides the contents of the AX by a specified source operand. The
AX is the implied destination operands.

• After the division, the quotient will be stored into AX and the remainder into DX. When the
divisor is of 8 bits, the dividend is AX. And in this case the quotient will be stored in AL and the
remainder in AH.

10

Example

 MOV AX, 0007H

 MOV CL, 02H

 DIV CL

After this program, the result is available in AL (= 3H) and

the remainder is present in AH (= 01H).

Example

 MOV AX, 0007H

 MOV CX, 02H

 DIV CX

After this program, the result is available in AX (= 3H) and

the remainder is present in DX (= 01H).

• MUL operation: This instruction multiplies the contents of the AL or the AX by a specified
source operand. The AL and the AX are the implied destination operands for 8-bit and l6-bit
multiplication.

11

Example

 MOV AL, 0FDH

MOV CL, 02H

MUL CL

The result will be in AX = 01FAH

Assembly - Conditions
• Conditional execution in assembly language is accomplished by several looping and branching

instructions. These instructions can change the flow of control in a program.

• The CMP instruction compares two operands. It is generally used in conditional execution. This
instruction basically subtracts one operand from the other for comparing whether the operands are
equal or not.

12

Example

MOV DX, 10H

CMP DX, 00 ; Compare the DX value with zero

JE L7 ; If yes, then jump to label L7

.

.

L7: ...

Example
MOV DX, 05H

INC DX

CMP DX, 10 ; Compares whether the counter has reached 10

JLE LP1 ; If it is less than or equal to 10, then jump to LP1

13

Example:

CMP AL, BL

JE EQUAL

CMP AL, BH

JE EQUAL

CMP AL, CL

JE EQUAL

NON_EQUAL: ...

EQUAL: ...

Example: The following program displays the largest of two

variables

MOV AX, 10

CMP AX, 20

JG End

MOV AX, 20

End: ret

Example: The following program displays the lowest of two

variables

MOV AX, 10

CMP AX, 20

JL End

MOV AX, 20

End: ret

14

Example: Write a program to find the summation of the sequence 1, 2, 3, …. 10

MOV CX, 1

MOV AX, 0

p1: CMP CX, 0AH

JG stop

ADD AX, CX

INC CX

JMP p1

stop: ret

Example: Write a program to find the summation of the sequence 12 + 22 + 32 +⋯+ 102

MOV CX, 1

MOV BX, 0

p1: CMP CX, 0AH

JG stop

MOV AX, CX

MUL CX

ADD BX, AX

INC CX

JMP p1

stop: ret

Data Defining

• These directives are used to define the type of data stored in the memory. These
directives are DB, DW.

• DB (Define byte): The define byte directive is used to allocate and initializes
one or more bytes of data. Here name is the symbol assigned to the variable
which represents the address of the memory where the data is stored in a
particular segment.

• For example:

Value_1 DB S5H, 0FH, 6DH

In this example Value_1 is the name given to a memory location from
where these three data are stored as shown in following Figure

• DW (Define double byte or define word): This directive is used to allocate
or initialize one or more data in word (l6-bit) format.

• For example:

Value_2 DW 0F35H, 456DH

These two words will be stored in memory as shown in the following
Figure

15

Value_1

Value_2

16

ORG 100h

 MOV AH, var1

 MOV AL, var2

 MOV sum_0, AH

 ADD sum_0, AL

 MOV BH, sum_0

 RET ; stops the program.

 var1 DB 2h

 var2 DB 3h

 sum_0 DB ?

ORG 100h is a compiler directive (it tells compiler how to

handle the source code). This directive is very important

when you work with variables. It tells compiler that the

executable file will be loaded at the offset of 100h (256

bytes), so compiler should calculate the correct address for

all variables when it replaces the variable names with their

offsets.

Why executable file is loaded at offset of 100h?
Operating system keeps some data about the program in
the first 256 bytes of the CS (code segment), such as
command line parameters and etc.

STRING INSTRUCTIONS

• String is a group of bytes/words and their memory is always allocated
in a sequential order.

• H.W: write a report about the instructions with examples under this
group?

17

	Slide 1: Microprocessors & Microcontrollers
	Slide 2: Instructions Set of 8086
	Slide 3: Addressing Modes Of 8086
	Slide 4
	Slide 5
	Slide 6: Data Transfer Instructions
	Slide 7
	Slide 8: Arithmetic Instructions
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Assembly - Conditions
	Slide 13
	Slide 14
	Slide 15: Data Defining
	Slide 16
	Slide 17: STRING INSTRUCTIONS

